Displaying similar documents to “A new obstruction to minimal isometric immersions into a real space form.”

Semiparallel isometric immersions of 3-dimensional semisymmetric Riemannian manifolds

Ülo Lumiste (2003)

Czechoslovak Mathematical Journal

Similarity:

A Riemannian manifold is said to be semisymmetric if R ( X , Y ) · R = 0 . A submanifold of Euclidean space which satisfies R ¯ ( X , Y ) · h = 0 is called semiparallel. It is known that semiparallel submanifolds are intrinsically semisymmetric. But can every semisymmetric manifold be immersed isometrically as a semiparallel submanifold? This problem has been solved up to now only for the dimension 2, when the answer is affirmative for the positive Gaussian curvature. Among semisymmetric manifolds a special role is played...

Chen-Ricci inequalities for submanifolds of Riemannian and Kaehlerian product manifolds

Erol Kılıç, Mukut Mani Tripathi, Mehmet Gülbahar (2016)

Annales Polonici Mathematici

Similarity:

Some examples of slant submanifolds of almost product Riemannian manifolds are presented. The existence of a useful orthonormal basis in proper slant submanifolds of a Riemannian product manifold is proved. The sectional curvature, the Ricci curvature and the scalar curvature of submanifolds of locally product manifolds of almost constant curvature are obtained. Chen-Ricci inequalities involving the Ricci tensor and the squared mean curvature for submanifolds of locally product manifolds...