Random mappings, forests, and subsets associated with Abel-Cayley-Hurwitz multinomial expansions.
Pitman, Jim (2001)
Séminaire Lotharingien de Combinatoire [electronic only]
Similarity:
Pitman, Jim (2001)
Séminaire Lotharingien de Combinatoire [electronic only]
Similarity:
Székely, Laszlo A., Erdős, Péter L., Steel, M.A. (1992)
Séminaire Lotharingien de Combinatoire [electronic only]
Similarity:
Kuba, Markus (2011)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Iriarte Giraldo, Benjamin (2010)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Chen, Bo, Ford, Daniel, Winkel, Matthias (2009)
Electronic Journal of Probability [electronic only]
Similarity:
Duško Jojić (2012)
Publications de l'Institut Mathématique
Similarity:
Collet, Pierre, Galves, Antonio, Leonardi, Florencia (2008)
Electronic Journal of Probability [electronic only]
Similarity:
Jessica Enright, Piotr Rudnicki (2008)
Formalized Mathematics
Similarity:
We prove, following [5, p. 92], that any family of subtrees of a finite tree satisfies the Helly property.MML identifier: HELLY, version: 7.8.09 4.97.1001
Miermont, Grégory, Weill, Mathilde (2008)
Electronic Journal of Probability [electronic only]
Similarity:
Miermont, Grégory (2008)
Electronic Communications in Probability [electronic only]
Similarity:
Gerritzen, L. (2004)
Serdica Mathematical Journal
Similarity:
2000 Mathematics Subject Classification: 17A50, 05C05. In this note we present the formula for the coefficients of the substitution series f(g(x)) of planar tree power series g(x) into f(x).