Displaying similar documents to “Symmetries of second-order potential differential systems.”

An infinite dimensional version of the third Lie theorem

Rybicki, Tomasz

Similarity:

The concept of evolution operator is used to introduce a weak Lie subgroup of a regular Lie group, and to give a new version of the third Lie theorem. This enables the author to formulate and to study the problem of integrability of infinite-dimensional Lie algebras. Several interesting examples are presented.

Lie systems: theory, generalisations, and applications

J. F. Cariñena, J. de Lucas

Similarity:

Lie systems form a class of systems of first-order ordinary differential equations whose general solutions can be described in terms of certain finite families of particular solutions and a set of constants, by means of a particular type of mapping: the so-called superposition rule. Apart from this fundamental property, Lie systems enjoy many other geometrical features and they appear in multiple branches of mathematics and physics. These facts, together with the authors' recent findings...

Superintegrability and time-dependent integrals

Ondřej Kubů, Libor Šnobl (2019)

Archivum Mathematicum

Similarity:

While looking for additional integrals of motion of several minimally superintegrable systems in static electric and magnetic fields, we have realized that in some cases Lie point symmetries of Euler-Lagrange equations imply existence of explicitly time-dependent integrals of motion through Noether’s theorem. These integrals can be combined to get an additional time-independent integral for some values of the parameters of the considered systems, thus implying maximal superintegrability....