Extremal graph theory for metric dimension and diameter.
Hernando, Carmen, Mora, Mercè, Pelayo, Ignacio M., Seara, Carlos, Wood, David R. (2010)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Hernando, Carmen, Mora, Mercè, Pelayo, Ignacio M., Seara, Carlos, Wood, David R. (2010)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Kishori P. Narayankar, S. B. Lokesh, Veena Mathad, Ivan Gutman (2012)
Kragujevac Journal of Mathematics
Similarity:
Markowsky, Greg, Koolen, Jacobus (2010)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Liu Wu-xin, Wei Fu-yi (2011)
Kragujevac Journal of Mathematics
Similarity:
Chen, Guantao, Egawa, Yoshimi, Kawarabayashi, Ken-ichi, Mohar, Bojan, Ota, Katsuhiro (2011)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Pedersen, Anders Sune (2011)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
M. Petrović, I. Gutman, Shu-Guang Guo (2005)
Bulletin, Classe des Sciences Mathématiques et Naturelles, Sciences mathématiques
Similarity:
Andreica, Mugurel Ionuţ, Ţăpuş, Nicolae (2009)
Acta Universitatis Apulensis. Mathematics - Informatics
Similarity:
Kewen Zhao (2013)
Matematički Vesnik
Similarity:
Deijfen, Maria, Häggström, Olle (2006)
Electronic Journal of Probability [electronic only]
Similarity:
Christophe Pittet (1998)
Colloquium Mathematicae
Similarity:
Let X be a connected graph with uniformly bounded degree. We show that if there is a radius r such that, by removing from X any ball of radius r, we get at least three unbounded connected components, then X satisfies a strong isoperimetric inequality. In particular, the non-reduced -cohomology of X coincides with the reduced -cohomology of X and is of uncountable dimension. (Those facts are well known when X is the Cayley graph of a finitely generated group with infinitely many ends.) ...
Duchi, E., Sulanke, R.A. (2004)
Séminaire Lotharingien de Combinatoire [electronic only]
Similarity: