The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the K -theory of higher rank graph C * -algebras.”

Hyperidentities in associative graph algebras

Tiang Poomsa-ard (2000)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Graph algebras establish a connection between directed graphs without multiple edges and special universal algebras of type (2,0). We say that a graph G satisfies an identity s ≈ t if the correspondinggraph algebra A(G) satisfies s ≈ t. A graph G is called associative if the corresponding graph algebra A(G) satisfies the equation (xy)z ≈ x(yz). An identity s ≈ t of terms s and t of any type τ is called a hyperidentity of an algebra A̲ if whenever the operation symbols occurring in s...

The rank of a cograph.

Royle, Gordon F. (2003)

The Electronic Journal of Combinatorics [electronic only]

Similarity:

Hyperidentities in transitive graph algebras

Tiang Poomsa-ard, Jeerayut Wetweerapong, Charuchai Samartkoon (2005)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Graph algebras establish a connection between directed graphs without multiple edges and special universal algebras of type (2,0). We say that a graph G satisfies an identity s ≈ t if the corresponding graph algebra A(G) satisfies s ≈ t. A graph G = (V,E) is called a transitive graph if the corresponding graph algebra A(G) satisfies the equation x(yz) ≈ (xz)(yz). An identity s ≈ t of terms s and t of any type t is called a hyperidentity of an algebra A̲ if whenever the operation symbols...