The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “New bounds for A weights.”

On weighted inequalities for operators of potential type

Shiying Zhao (1996)

Colloquium Mathematicae

Similarity:

In this paper, we discuss a class of weighted inequalities for operators of potential type on homogeneous spaces. We give sufficient conditions for the weak and strong type weighted inequalities sup_{λ>0} λ|{x ∈ X : |T(fdσ)(x)|>λ }|_{ω}^{1/q} ≤ C (∫_{X} |f|^{p}dσ)^{1/p} and (∫_{X} |T(fdσ)|^{q}dω )^{1/q} ≤ C (∫_X |f|^{p}dσ )^{1/p} in the cases of 0 < q < p ≤ ∞ and 1 ≤ q < p < ∞, respectively, where T is an operator of potential type, and ω and σ are Borel measures on...