Special morphisms of groupoids.
Ivan, Gheorghe (2002)
Novi Sad Journal of Mathematics
Similarity:
Ivan, Gheorghe (2002)
Novi Sad Journal of Mathematics
Similarity:
Buneci, Mădălina Roxana (2005)
Acta Universitatis Apulensis. Mathematics - Informatics
Similarity:
Přemysl Jedlička (2005)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
We study the groupoids satisfying both the left distributivity and the left idempotency laws. We show that they possess a canonical congruence admitting an idempotent groupoid as factor. This congruence gives a construction of left idempotent left distributive groupoids from left distributive idempotent groupoids and right constant groupoids.
Petrescu, Adrian (2005)
Acta Universitatis Apulensis. Mathematics - Informatics
Similarity:
Brown, Ronald, Glazebrook, James F. (2003)
Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica
Similarity:
Glavosits, Tamás, Száz, Árpád (2002)
Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică
Similarity:
J. Dudek (1996)
Colloquium Mathematicae
Similarity:
The main result of this paper is a description of totally commutative idempotent groupoids. In particular, we show that if an idempotent groupoid (G,·) has precisely m ≥ 2 distinct essentially binary polynomials and they are all commutative, then G contains a subgroupoid isomorphic to the groupoid described below. In [2], this fact was proved for m = 2.
Brown, R., Moore, E.J., Porter, T., Wensley, C.D. (2002)
Georgian Mathematical Journal
Similarity: