Displaying similar documents to “On domination in 2-connected cubic graphs.”

Secure sets and their expansion in cubic graphs

Katarzyna Jesse-Józefczyk, Elżbieta Sidorowicz (2014)

Open Mathematics

Similarity:

Consider a graph whose vertices play the role of members of the opposing groups. The edge between two vertices means that these vertices may defend or attack each other. At one time, any attacker may attack only one vertex. Similarly, any defender fights for itself or helps exactly one of its neighbours. If we have a set of defenders that can repel any attack, then we say that the set is secure. Moreover, it is strong if it is also prepared for a raid of one additional foe who can strike...

Dominating and total dominating partitions in cubic graphs

Justin Southey, Michael Henning (2011)

Open Mathematics

Similarity:

In this paper, we continue the study of domination and total domination in cubic graphs. It is known [Henning M.A., Southey J., A note on graphs with disjoint dominating and total dominating sets, Ars Combin., 2008, 89, 159–162] that every cubic graph has a dominating set and a total dominating set which are disjoint. In this paper we show that every connected cubic graph on nvertices has a total dominating set whose complement contains a dominating set such that the cardinality of the...

Characterization of Cubic Graphs G with ir t (G) = Ir t (G) = 2

Changiz Eslahchi, Shahab Haghi, Nader Jafari (2014)

Discussiones Mathematicae Graph Theory

Similarity:

A subset S of vertices in a graph G is called a total irredundant set if, for each vertex v in G, v or one of its neighbors has no neighbor in S −{v}. The total irredundance number, ir(G), is the minimum cardinality of a maximal total irredundant set of G, while the upper total irredundance number, IR(G), is the maximum cardinality of a such set. In this paper we characterize all cubic graphs G with irt(G) = IRt(G) = 2

Graphs with disjoint dominating and paired-dominating sets

Justin Southey, Michael Henning (2010)

Open Mathematics

Similarity:

A dominating set of a graph is a set of vertices such that every vertex not in the set is adjacent to a vertex in the set, while a paired-dominating set of a graph is a dominating set such that the subgraph induced by the dominating set contains a perfect matching. In this paper, we show that no minimum degree is sufficient to guarantee the existence of a disjoint dominating set and a paired-dominating set. However, we prove that the vertex set of every cubic graph can be partitioned...