Displaying similar documents to “Farthest points in normed linear spaces.”

On the lambda-property and computation of the lambda-function of some normed spaces.

Mohamed Akkouchi, Hassan Sadiky (1993)

Extracta Mathematicae

Similarity:

R. M. Aron and R. H. Lohman introduced, in [1], the notion of lambda-property in a normed space and calculated the lambda-function for some classical normed spaces. In this paper we give some more general remarks on this lambda-property and compute the lambda-function of other normed spaces, namely: B(S,∑,X) and M(E).

Bidual Spaces and Reflexivity of Real Normed Spaces

Keiko Narita, Noboru Endou, Yasunari Shidama (2014)

Formalized Mathematics

Similarity:

In this article, we considered bidual spaces and reflexivity of real normed spaces. At first we proved some corollaries applying Hahn-Banach theorem and showed related theorems. In the second section, we proved the norm of dual spaces and defined the natural mapping, from real normed spaces to bidual spaces. We also proved some properties of this mapping. Next, we defined real normed space of R, real number spaces as real normed spaces and proved related theorems. We can regard linear...

Baire's Category Theorem and Some Spaces Generated from Real Normed Space 1

Noboru Endou, Yasunari Shidama, Katsumasa Okamura (2006)

Formalized Mathematics

Similarity:

As application of complete metric space, we proved a Baire's category theorem. Then we defined some spaces generated from real normed space and discussed each of them. In the second section, we showed the equivalence of convergence and the continuity of a function. In other sections, we showed some topological properties of two spaces, which are topological space and linear topological space generated from real normed space.