Some properties of octonion and quaternion algebras.
Flaut, Cristina (2006)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Similarity:
Flaut, Cristina (2006)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Similarity:
Hübner, Marion, Petersson, Holger P. (2004)
Beiträge zur Algebra und Geometrie
Similarity:
L. Torkzadeh, M. M. Zahedi (2006)
Mathware and Soft Computing
Similarity:
In this note we classify the bounded hyper K-algebras of order 3, which have D = {1}, D = {1,2} and D = {0,1} as a dual commutative hyper K-ideal of type 1. In this regard we show that there are such non-isomorphic bounded hyper K-algebras.
Siddiqui, Akhlaq A. (2011)
The New York Journal of Mathematics [electronic only]
Similarity:
Siddiqui, Akhlaq A. (2011)
The New York Journal of Mathematics [electronic only]
Similarity:
Sergio Albeverio, Bakhrom A. Omirov, Isamiddin S. Rakhimov (2006)
Extracta Mathematicae
Similarity:
Bračič, Janko, Moslehian, Mohammad Sal (2007)
Bulletin of the Malaysian Mathematical Sciences Society. Second Series
Similarity:
Ernst Dieterich (1999)
Colloquium Mathematicae
Similarity:
Given a euclidean vector space V = (V,〈〉) and a linear map η: V ∧ V → V, the anti-commutative algebra (V,η) is called dissident in case η(v ∧ w) ∉ ℝv ⊕ ℝw for each pair of non-proportional vectors (v,w) ∈ . For any dissident algebra (V,η) and any linear form ξ: V ∧ V → ℝ, the vector space ℝ × V, endowed with the multiplication (α,v)(β,w) = (αβ -〈v,w〉+ ξ(v ∧ w), αw + βv + η(v ∧ w)), is a quadratic division algebra. Up to isomorphism, each real quadratic division algebra arises in this...
Siddiqui, Akhlaq A. (2010)
The New York Journal of Mathematics [electronic only]
Similarity:
Bovdi, Victor (2006)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Similarity: