A Décomposition Theorem on Euclidean Steiner Minimal Trees.
D.Z. Du, F.K. Hwang, G.D. Song, G.Y Ting (1988)
Discrete & computational geometry
Similarity:
D.Z. Du, F.K. Hwang, G.D. Song, G.Y Ting (1988)
Discrete & computational geometry
Similarity:
D.Z. Du, F.K. Hwang, G.D. Song, G.Y Ting (1987)
Discrete & computational geometry
Similarity:
B. Aronov, D. Eppstein, M. Bern (1994)
Discrete & computational geometry
Similarity:
D.Z. Du, F.K. Hwang, J.F. Wenig (1987)
Discrete & computational geometry
Similarity:
Bhadury, J., Chandrasekharan, R., Gewali, L. (2000)
Southwest Journal of Pure and Applied Mathematics [electronic only]
Similarity:
Jose Cáceres, Ortrud R. Oellermann, M. L. Puertas (2012)
Discussiones Mathematicae Graph Theory
Similarity:
Let V be a finite set and 𝓜 a collection of subsets of V. Then 𝓜 is an alignment of V if and only if 𝓜 is closed under taking intersections and contains both V and the empty set. If 𝓜 is an alignment of V, then the elements of 𝓜 are called convex sets and the pair (V,𝓜 ) is called an alignment or a convexity. If S ⊆ V, then the convex hull of S is the smallest convex set that contains S. Suppose X ∈ ℳ. Then x ∈ X is an extreme point for X if X∖{x} ∈ ℳ. A convex geometry on a finite...
R.S. Booth (1991)
Discrete & computational geometry
Similarity:
M. Yvinec (1992)
Discrete & computational geometry
Similarity:
H. Edelsbrunner, E. Welzl, P.K. Agarwal, O. Schwarzkopf (1991)
Discrete & computational geometry
Similarity:
N. Alon, Y. Azar (1993)
Discrete & computational geometry
Similarity:
R.E. Jamison (1987)
Discrete & computational geometry
Similarity:
R. Kenyon, C. Kenyon (1992)
Discrete & computational geometry
Similarity: