On a convolution type integral I
S. R. Yadava (1972)
Matematički Vesnik
Similarity:
S. R. Yadava (1972)
Matematički Vesnik
Similarity:
Brian Fisher, Emin Özcag (1991)
Publications de l'Institut Mathématique
Similarity:
Kazimierz Urbanik (1987)
Colloquium Mathematicum
Similarity:
Nedeljkov, M., Pilipović, S. (1992)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
J. Kucharczak (1988)
Colloquium Mathematicae
Similarity:
J. Kucharczak (1973)
Colloquium Mathematicae
Similarity:
Kazimierz Urbanik (1967)
Colloquium Mathematicum
Similarity:
Anna Kula (2011)
Banach Center Publications
Similarity:
The q-convolution is a measure-preserving transformation which originates from non-commutative probability, but can also be treated as a one-parameter deformation of the classical convolution. We show that its commutative aspect is further certified by the fact that the q-convolution satisfies all of the conditions of the generalized convolution (in the sense of Urbanik). The last condition of Urbanik's definition, the law of large numbers, is the crucial part to be proved and the non-commutative...
E. Gesztelyi (1970)
Annales Polonici Mathematici
Similarity:
Stojanović, Mirjana (1996)
Novi Sad Journal of Mathematics
Similarity:
Kazimierz Urbanik (1987)
Colloquium Mathematicum
Similarity:
Brian Fisher (1991)
Annales Polonici Mathematici
Similarity:
Kislisçman, Adem (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
P. Lancaster (1972)
Numerische Mathematik
Similarity:
K.S. Thomas (1974/75)
Numerische Mathematik
Similarity: