Discretization of Volterra Integral Equations of the First Kind (II).
H. Brunner (1978)
Numerische Mathematik
Similarity:
H. Brunner (1978)
Numerische Mathematik
Similarity:
W. Mydlarczyk (1991)
Annales Polonici Mathematici
Similarity:
G. Karakostas (1987)
Colloquium Mathematicae
Similarity:
P.P.B. Eggermont (1987/88)
Numerische Mathematik
Similarity:
Richard Weiss, Frank de Hoog (1973)
Numerische Mathematik
Similarity:
O. Scherzer (1993/94)
Numerische Mathematik
Similarity:
Z. Jackiewicz (1979)
Numerische Mathematik
Similarity:
W. Hock (1982)
Numerische Mathematik
Similarity:
W. Okrasinski (1993)
Extracta Mathematicae
Similarity:
W. Hock (1979)
Numerische Mathematik
Similarity:
M.E. Brewster, R. Kannan (1984)
Numerische Mathematik
Similarity:
Jesús M. Fernández Castillo, W. Okrasinski (1991)
Extracta Mathematicae
Similarity:
In mathematical models of some physical phenomena a new class of nonlinear Volterra equations appears ([5],[6]). The equations belonging to this class have u = 0 as a solution (trivial solution), but with respect to their physical meaning, nonnegative nontrivial solutions are of prime importance.
M. Niedziela (2008)
Applicationes Mathematicae
Similarity:
The behaviour near the origin of nontrivial solutions to integral Volterra equations with a power nonlinearity is studied. Estimates of nontrivial solutions are given and some numerical examples are considered.