Displaying similar documents to “Algorithms for Bound Constrained Quadratic Programming Problems.”

Branch-delete-bound algorithm for globally solving quadratically constrained quadratic programs

Zhisong Hou, Hongwei Jiao, Lei Cai, Chunyang Bai (2017)

Open Mathematics

Similarity:

This paper presents a branch-delete-bound algorithm for effectively solving the global minimum of quadratically constrained quadratic programs problem, which may be nonconvex. By utilizing the characteristics of quadratic function, we construct a new linearizing method, so that the quadratically constrained quadratic programs problem can be converted into a linear relaxed programs problem. Moreover, the established linear relaxed programs problem is embedded within a branch-and-bound...

Redinv-SA: la simulated annealing for the quadratic assignment problem

N. M.M. de Abreu, T. M. Querido, P. O. Boaventura-Netto (2010)

RAIRO - Operations Research

Similarity:

An algebraic and combinatorial approach to the study of the Quadratic Assignment Problem produced theoretical results that can be applied to (meta) heuristics to give them information about the problem structure, allowing the construction of algorithms. In this paper those results were applied to inform a Simulated Annealing-type heuristic (which we called RedInv-SA). Some results from tests with known literature instances are presented.

Quadratic 0–1 programming: Tightening linear or quadratic convex reformulation by use of relaxations

Alain Billionnet, Sourour Elloumi, Marie-Christine Plateau (2008)

RAIRO - Operations Research

Similarity:

Many combinatorial optimization problems can be formulated as the minimization of a 0–1 quadratic function subject to linear constraints. In this paper, we are interested in the exact solution of this problem through a two-phase general scheme. The first phase consists in reformulating the initial problem either into a compact mixed integer linear program or into a 0–1 quadratic convex program. The second phase simply consists in submitting the reformulated problem to a standard solver....