On Best Cubature Formulas and Spline Interpolation.
M.E.A. El Tom (1979)
Numerische Mathematik
Similarity:
M.E.A. El Tom (1979)
Numerische Mathematik
Similarity:
W. Dahmen, T.N.T. Goodman (1987/88)
Numerische Mathematik
Similarity:
S. Riemenschneider, Karl Scherer (1990/91)
Numerische Mathematik
Similarity:
Kurt Jetter, Joachim Stöckler (1991/92)
Numerische Mathematik
Similarity:
Manabu Sakai, M.C. de López de Silanes (1986/87)
Numerische Mathematik
Similarity:
Puşcaş, Mihaela (2003)
Acta Universitatis Apulensis. Mathematics - Informatics
Similarity:
Chi Li Hu, Larry L. Schumaker (1986)
Numerische Mathematik
Similarity:
Isaac J. Schoenberg (1967-1968)
Séminaire Delange-Pisot-Poitou. Théorie des nombres
Similarity:
C. Dagnino, A. Palamara Orsi (1987/88)
Numerische Mathematik
Similarity:
S.L. Lee (1978)
Aequationes mathematicae
Similarity:
S. I. Novikov (1989)
Banach Center Publications
Similarity:
Segeth, Karel
Similarity:
There are two grounds the spline theory stems from - the algebraic one (where splines are understood as piecewise smooth functions satisfying some continuity conditions) and the variational one (where splines are obtained via minimization of some quadratic functionals with constraints). We use the general variational approach called smooth interpolation introduced by Talmi and Gilat and show that it covers not only the cubic spline and its 2D and 3D analogues but also the well known...