Algorithm 46. Determination of an interpolating quadratic spline function
E. Neuman (1976)
Applicationes Mathematicae
Similarity:
E. Neuman (1976)
Applicationes Mathematicae
Similarity:
Jiří Kobza (1992)
Applications of Mathematics
Similarity:
The extremal property of quadratic splines interpolating the first derivatives is proved. Quadratic spline smoothing the given values of the first derivative, depending on the knot weights and smoothing parameter , is then studied. The algorithm for computing appropriate parameters of such splines is given and the dependence on the smoothing parameter is mentioned.
Tommy Elfving, Lars-Erik Andersson (1987/88)
Numerische Mathematik
Similarity:
E. Neuman (1980)
Applicationes Mathematicae
Similarity:
Jiří Kobza (2000)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Similarity: