A Classical Approach to Dynamics of Parabolic Competitive Systems
Pietruk, Małgorzata, Przeradzki, Bogdan (2016-05-20T09:29:41Z)
Acta Universitatis Lodziensis. Folia Mathematica
Similarity:
Pietruk, Małgorzata, Przeradzki, Bogdan (2016-05-20T09:29:41Z)
Acta Universitatis Lodziensis. Folia Mathematica
Similarity:
Eugene O'Riordan, Martin Stynes (1987)
Numerische Mathematik
Similarity:
Beyn, W.-J., Kolezhuk, V.S., Pilyugin, S.Yu. (2004)
Zapiski Nauchnykh Seminarov POMI
Similarity:
Shishkin, G. I. (2001)
Computational Methods in Applied Mathematics
Similarity:
Guo Ben Yu, A.R. Mitchell (1986)
Numerische Mathematik
Similarity:
A.K. Aziz, A.B. Stephens, Manil Suri (1988)
Numerische Mathematik
Similarity:
V. Dinakar, N. Barani Balan, K. Balachandran (2017)
Nonautonomous Dynamical Systems
Similarity:
We consider the reaction-diffusion equation with discontinuities in the diffusion coefficient and the potential term. We start by deriving the Carleman estimate for the discontinuous reaction-diffusion operator which is deployed in the inverse problems of finding the stability result of the two discontinuous coefficients from the internal observations of the given parabolic equation.
Bizhanova, G.I. (2004)
Zapiski Nauchnykh Seminarov POMI
Similarity:
K. Kunisch, G. Peichl (1991)
Numerische Mathematik
Similarity:
R.E. Bank, J.F. Bürgler, ... (1990/91)
Numerische Mathematik
Similarity:
Hideki Murakawa (2009)
Kybernetika
Similarity:
This paper deals with nonlinear diffusion problems involving degenerate parabolic problems, such as the Stefan problem and the porous medium equation, and cross-diffusion systems in population ecology. The degeneracy of the diffusion and the effect of cross-diffusion, that is, nonlinearities of the diffusion, complicate its analysis. In order to avoid the nonlinearities, we propose a reaction-diffusion system with solutions that approximate those of the nonlinear diffusion problems....