The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Application of Moser's method to a certain type of evolution equations”

Small time-periodic solutions to a nonlinear equation of a vibrating string

Eduard Feireisl (1987)

Aplikace matematiky

Similarity:

In this paper, the system consisting of two nonlinear equations is studied. The former is hyperbolic with a dissipative term and the latter is elliptic. In a special case, the system reduces to the approximate model for the damped transversal vibrations of a string proposed by G. F. Carrier and R. Narasimha. Taking advantage of accelerated convergence methods, the existence of at least one time-periodic solution is stated on condition that the right-hand side of the system is sufficiently...

Time-periodic solutions of a quasilinear beam equation via accelerated convergence methods

Eduard Feireisl (1988)

Aplikace matematiky

Similarity:

The author investigates time-periodic solutions of the quasilinear beam equation with the help of accelerated convergence methods. Using the Newton iteration scheme, the problem is approximated by a sequence of linear equations solved via the Galerkin method. The derivatiove loss inherent to this kind of problems is compensated by taking advantage of smoothing operators.