Concepts of generalized bounded variation and the theory of Fourier series.
Avdispahić, M. (1986)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Avdispahić, M. (1986)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Aplakov, Alexander (2006)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Similarity:
M. Bożejko, T. Pytlik (1972)
Colloquium Mathematicae
Similarity:
A. Olevskiĭ (1990)
Colloquium Mathematicae
Similarity:
Zhang, Qing-Hua, Chen, Shuiming, Qu, Yuanyuan (2005)
International Journal of Mathematics and Mathematical Sciences
Similarity:
S. M. Mazhar (1985)
Matematički Vesnik
Similarity:
T. W. Körner (1981)
Colloquium Mathematicae
Similarity:
M. Mathias (1923)
Mathematische Zeitschrift
Similarity:
Wade, William R. (1982)
International Journal of Mathematics and Mathematical Sciences
Similarity:
R. Bojanic (1979)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
Richard M. Aron, David Pérez-García, Juan B. Seoane-Sepúlveda (2006)
Studia Mathematica
Similarity:
We show that, given a set E ⊂ 𝕋 of measure zero, the set of continuous functions whose Fourier series expansion is divergent at any point t ∈ E is dense-algebrable, i.e. there exists an infinite-dimensional, infinitely generated dense subalgebra of 𝓒(𝕋) every non-zero element of which has a Fourier series expansion divergent in E.