Displaying similar documents to “A class of Cardinal Lacunary interpolation problems by spline functions.”

Multivariate smooth interpolation that employs polyharmonic functions

Segeth, Karel

Similarity:

We study the problem of construction of the smooth interpolation formula presented as the minimizer of suitable functionals subject to interpolation constraints. We present a procedure for determining the interpolation formula that in a natural way leads to a linear combination of polyharmonic splines complemented with lower order polynomial terms. In general, such formulae can be very useful e.g. in geographic information systems or computer aided geometric design. A simple computational...

A particular smooth interpolation that generates splines

Segeth, Karel

Similarity:

There are two grounds the spline theory stems from - the algebraic one (where splines are understood as piecewise smooth functions satisfying some continuity conditions) and the variational one (where splines are obtained via minimization of some quadratic functionals with constraints). We use the general variational approach called smooth interpolation introduced by Talmi and Gilat and show that it covers not only the cubic spline and its 2D and 3D analogues but also the well known...