On the number of derangements of a sharply k-ply transitive set of permutations.
Werner Heise, Harald Kunde (1977)
Aequationes mathematicae
Similarity:
Werner Heise, Harald Kunde (1977)
Aequationes mathematicae
Similarity:
William Kerby (1986)
Aequationes mathematicae
Similarity:
Jay R. Goldman (1975)
Aequationes mathematicae
Similarity:
W. Kerby, H. Wefelscheid (1972)
Aequationes mathematicae
Similarity:
D.M. Jackson, R.C. Read (1978)
Aequationes mathematicae
Similarity:
William Kerby (1976)
Aequationes mathematicae
Similarity:
László Babai (1981/82)
Inventiones mathematicae
Similarity:
Karl Strambach (1987)
Aequationes mathematicae
Similarity:
Gy. Károlyi, S.J. Kovács, P.P. Pálfy (1990)
Aequationes mathematicae
Similarity:
Martin W. Liebeck (1980)
Mathematische Zeitschrift
Similarity:
Paweł Klinga (2016)
Colloquium Mathematicae
Similarity:
We prove that every permutation of ω² is a composition of a finite number of axial permutations, where each axial permutation moves only a finite number of elements on each axis.
R. C. Entriger (1971)
Gaceta Matemática
Similarity: