Averaging interpolation on sets with multiplicities.
A. Sharma, M.A. Botto (1977)
Aequationes mathematicae
Similarity:
A. Sharma, M.A. Botto (1977)
Aequationes mathematicae
Similarity:
Ljubiša M. Kocić, Alba Chiara Simoncelli (2000)
Visual Mathematics
Similarity:
M. A. Navascués, M. V. Sebastián (2009)
Banach Center Publications
Similarity:
The methodology of fractal interpolation is very useful for processing experimental signals in order to extract their characteristics of complexity. We go further and prove that the Iterated Function System involved may also be used to obtain new approximants that are close to classical ones. In this work a classical function and a fractal function are combined to construct a new interpolant. The fractal function is first defined as a perturbation of a classical mapping. The additional...
E.W. Cheney, T.A. Kilgore (1976)
Aequationes mathematicae
Similarity:
Milman, Mario (1998)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
A. Sharma, R.B. Saxena (1991)
Aequationes mathematicae
Similarity:
Guantie Deng (2004)
Colloquium Mathematicae
Similarity:
We obtain a lower bound for the Hausdorff dimension of the graph of a fractal interpolation function with interpolation points .
S. Hartman (1968)
Colloquium Mathematicae
Similarity:
D.G. CANTOR, D. HILLIKER, E.G. STRAUS (1969)
Aequationes mathematicae
Similarity:
R. Taberski (1971)
Colloquium Mathematicae
Similarity:
R. Taberski (1974)
Colloquium Mathematicae
Similarity:
R. Taberski (1972)
Colloquium Mathematicae
Similarity:
S. Ugniewski (1977)
Applicationes Mathematicae
Similarity:
Branga, Adrian (1998)
General Mathematics
Similarity: