On the definition of a probalistic normed space. (Summary).
C. Alsina, A. Sklar, B. Schweizer (1992)
Aequationes mathematicae
Similarity:
C. Alsina, A. Sklar, B. Schweizer (1992)
Aequationes mathematicae
Similarity:
C. Alsina, M.S. Tomás, P. Guijarro (1997)
Aequationes mathematicae
Similarity:
Detlef Laugwitz (1993)
Aequationes mathematicae
Similarity:
Makeev, V.V. (2005)
Journal of Mathematical Sciences (New York)
Similarity:
F.F. BONSALL, B.E. CAIN, H. SCHNEIDER (1969)
Aequationes mathematicae
Similarity:
C.-S. Lin (2005)
Colloquium Mathematicae
Similarity:
We first introduce a notion of (a,b,c,d)-orthogonality in a normed linear space, which is a natural generalization of the classical isosceles and Pythagorean orthogonalities, and well known α- and (α,β)-orthogonalities. Then we characterize inner product spaces in several ways, among others, in terms of one orthogonality implying another orthogonality.
John AQ. Baker (1994)
Aequationes mathematicae
Similarity:
Ioan Goleţ (2007)
Mathematica Slovaca
Similarity: