On a family of quasi-arithmetic means.
G. Mayor (1994)
Aequationes mathematicae
Similarity:
G. Mayor (1994)
Aequationes mathematicae
Similarity:
CLYDE F. MARTIN (1971)
Aequationes mathematicae
Similarity:
T.D. HOWROYD (1971)
Aequationes mathematicae
Similarity:
T.D. HOWROYD (1971)
Aequationes mathematicae
Similarity:
S.K. Zaremba (1970)
Aequationes mathematicae
Similarity:
Justyna Jarczyk, Janusz Matkowski (2006)
Annales Polonici Mathematici
Similarity:
Under the assumption of twice continuous differentiability of some of the functions involved we determine all the weighted quasi-arithmetic means M,N,K such that K is (M,N)-invariant, that is, K∘(M,N) = K. Some applications to iteration theory and functional equations are presented.
J.L. Brenner, Michael E. Mays (1987)
Aequationes mathematicae
Similarity:
Halina Swiatak, Bohdan Lawruk (1974)
Aequationes mathematicae
Similarity:
J. Sándor (1990)
Aequationes mathematicae
Similarity:
J.S. Hwang, Paul Erdös (1978)
Aequationes mathematicae
Similarity:
S.P. Zhou (1991)
Aequationes mathematicae
Similarity: