Remarks on inertia theorems for matrices
Harald K. Wimmer, Allen D. Ziebur (1975)
Czechoslovak Mathematical Journal
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Harald K. Wimmer, Allen D. Ziebur (1975)
Czechoslovak Mathematical Journal
Similarity:
Marques de Sá, Eduardo (1989)
Portugaliae mathematica
Similarity:
Tian, Y. (2003)
Acta Mathematica Universitatis Comenianae. New Series
Similarity:
Seok-Zun Song, Young-Bae Jun (2006)
Discussiones Mathematicae - General Algebra and Applications
Similarity:
The zero-term rank of a matrix is the minimum number of lines (row or columns) needed to cover all the zero entries of the given matrix. We characterize the linear operators that preserve the zero-term rank of the m × n integer matrices. That is, a linear operator T preserves the zero-term rank if and only if it has the form T(A)=P(A ∘ B)Q, where P, Q are permutation matrices and A ∘ B is the Schur product with B whose entries are all nonzero integers.
Štefan Schwarz (1985)
Mathematica Slovaca
Similarity: