On the dual of a finitely generated multiplication module II
A. G. Naoum (1988)
Beiträge zur Algebra und Geometrie = Contributions to algebra and geometry
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A. G. Naoum (1988)
Beiträge zur Algebra und Geometrie = Contributions to algebra and geometry
Similarity:
A. G. Naoum, Kh. R. Sharaf (1988)
Beiträge zur Algebra und Geometrie = Contributions to algebra and geometry
Similarity:
A. G. Naoum (1989)
Beiträge zur Algebra und Geometrie = Contributions to algebra and geometry
Similarity:
Adil G. Naoum (1991)
Beiträge zur Algebra und Geometrie = Contributions to algebra and geometry
Similarity:
Robert Wisbauer (1985)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
Goro Azumaya (1992)
Publicacions Matemàtiques
Similarity:
We first prove that every countably presented module is a pure epimorphic image of a countably generated pure-projective module, and by using this we prove that if every countably generated pure-projective module is pure-injective then every module is pure-injective, while if in any countably generated pure-projective module every countably generated pure-projective pure submodule is a direct summand then every module is pure-projective.
Zhou, Dexu, Gong, Zhiwei (2010)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Wang, Yongduo, Sun, Qing (2007)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Wang, Yongduo (2007)
International Journal of Mathematics and Mathematical Sciences
Similarity: