Displaying similar documents to “On order and geodesic alignment of a connected bigraph”

Geodetic sets in graphs

Gary Chartrand, Frank Harary, Ping Zhang (2000)

Discussiones Mathematicae Graph Theory

Similarity:

For two vertices u and v of a graph G, the closed interval I[u,v] consists of u, v, and all vertices lying in some u-v geodesic in G. If S is a set of vertices of G, then I[S] is the union of all sets I[u,v] for u, v ∈ S. If I[S] = V(G), then S is a geodetic set for G. The geodetic number g(G) is the minimum cardinality of a geodetic set. A set S of vertices in a graph G is uniform if the distance between every two distinct vertices of S is the same fixed number. A geodetic set is essential...

The all-paths transit function of a graph

Manoj Changat, Sandi Klavžar, Henry Martyn Mulder (2001)

Czechoslovak Mathematical Journal

Similarity:

A transit function R on a set V is a function R V × V 2 V satisfying the axioms u R ( u , v ) , R ( u , v ) = R ( v , u ) and R ( u , u ) = { u } , for all u , v V . The all-paths transit function of a connected graph is characterized by transit axioms.

On the doubly connected domination number of a graph

Joanna Cyman, Magdalena Lemańska, Joanna Raczek (2006)

Open Mathematics

Similarity:

For a given connected graph G = (V, E), a set D V ( G ) is a doubly connected dominating set if it is dominating and both 〈D〉 and 〈V (G)-D〉 are connected. The cardinality of the minimum doubly connected dominating set in G is the doubly connected domination number. We investigate several properties of doubly connected dominating sets and give some bounds on the doubly connected domination number.

Decomposability of Abstract and Path-Induced Convexities in Hypergraphs

Francesco Mario Malvestuto, Marina Moscarini (2015)

Discussiones Mathematicae Graph Theory

Similarity:

An abstract convexity space on a connected hypergraph H with vertex set V (H) is a family C of subsets of V (H) (to be called the convex sets of H) such that: (i) C contains the empty set and V (H), (ii) C is closed under intersection, and (iii) every set in C is connected in H. A convex set X of H is a minimal vertex convex separator of H if there exist two vertices of H that are separated by X and are not separated by any convex set that is a proper subset of X. A nonempty subset X...