The class number of an imaginary quadratic field.
L. Carlitz (1953)
Commentarii mathematici Helvetici
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
L. Carlitz (1953)
Commentarii mathematici Helvetici
Similarity:
Richard Elman, T.Y. Lam (1974)
Commentarii mathematici Helvetici
Similarity:
Daniel Asimov (1977)
Commentarii mathematici Helvetici
Similarity:
Walter Baur, Herbert Gross (1977)
Commentarii mathematici Helvetici
Similarity:
W. Scharlau, M. Krüskemper (1988)
Commentarii mathematici Helvetici
Similarity:
Leon E. Mattics (1968)
Commentarii mathematici Helvetici
Similarity:
John Tate, Shmuel Rosset (1983)
Commentarii mathematici Helvetici
Similarity:
K. Chandrasekharan (1977)
Commentarii mathematici Helvetici
Similarity:
R. Narasimhan, K. Chandrasekharan (1968)
Commentarii mathematici Helvetici
Similarity:
Wilfred Kaplan (1978)
Commentarii mathematici Helvetici
Similarity:
Stéphane R. Louboutin (2007)
Colloquium Mathematicae
Similarity:
We give a simple proof of the Siegel-Tatuzawa theorem according to which the residues at s = 1 of the Dedekind zeta functions of quadratic number fields are effectively not too small, with at most one exceptional quadratic field. We then give a simple proof of the Brauer-Siegel theorem for normal number fields which gives the asymptotics for the logarithm of the product of the class number and the regulator of number fields.