Derivations of the algebra . (Dérivations de l'algèbre .)
Ben Yakoub, L., Louly, A. (2009)
Beiträge zur Algebra und Geometrie
Similarity:
Ben Yakoub, L., Louly, A. (2009)
Beiträge zur Algebra und Geometrie
Similarity:
Rüdiger Göbel, Warren May (1989)
Forum mathematicum
Similarity:
José Antonio Cuenca Mira (2002)
Extracta Mathematicae
Similarity:
Angel Rodríguez-Palacios (1987)
Collectanea Mathematica
Similarity:
Harald Upmeier (1979/80)
Manuscripta mathematica
Similarity:
V. Shul'Man (1994)
Studia Mathematica
Similarity:
The aim of this paper is to prove that derivations of a C*-algebra A can be characterized in the space of all linear continuous operators T : A → A by the conditions T(1) = 0, T(L∩R) ⊂ L + R for any closed left ideal L and right ideal R. As a corollary we get an extension of the result of Kadison [5] on local derivations in W*-algebras. Stronger results of this kind are proved under some additional conditions on the cohomologies of A.
Harald Upmeier (1980)
Manuscripta mathematica
Similarity:
Yury Popov (2020)
Communications in Mathematics
Similarity:
We give a survey of results obtained on the class of conservative algebras and superalgebras, as well as on their important subvarieties, such as terminal algebras.
M. Cabrera, J. Martínez Moreno, A. Rodríguez (1986)
Extracta Mathematicae
Similarity:
Andrzej Nowicki (2001)
Colloquium Mathematicae
Similarity:
Let k be a field. We prove that any polynomial ring over k is a Kadison algebra if and only if k is infinite. Moreover, we present some new examples of Kadison algebras and examples of algebras which are not Kadison algebras.
Harald Upmeier (1980)
Mathematica Scandinavica
Similarity:
B.M. Schein, V.S. Trohimenko (1979)
Semigroup forum
Similarity:
J. Słomiński
Similarity:
CONTENTSIntroduction.................................................................................................................... 5§ 1. Fundamental concepts for quasi-algebras..................................................... 5§ 2. Peano-algebras.................................................................................................... 13§ 3. Peano-algebras and free quasi-algebras....................................................... 25§ 4. Theorems concerning free...