The universality theorem for Hecke L-functions
Hidehiko Mishou (2003)
Acta Arithmetica
Similarity:
Hidehiko Mishou (2003)
Acta Arithmetica
Similarity:
Brad A. Emmons, Dominic Lanphier (2007)
Acta Arithmetica
Similarity:
Cristina M. Ballantine, John A. Rhodes, Thomas R. Shemanske (2004)
Acta Arithmetica
Similarity:
Lascoux, Alain (1998)
Documenta Mathematica
Similarity:
Uwe Weselmann (1989)
Inventiones mathematicae
Similarity:
Winfried Kohnen (1992)
Mathematische Annalen
Similarity:
W. Kohnen, J. Sengupta (2001)
Acta Arithmetica
Similarity:
Helversen-Pasotto, Anna
Similarity:
[For the entire collection see Zbl 0742.00067.]In the first part some general results on Hecke algebras are recalled; the structure constants corresponding to the standard basis are defined; in the following the example of the commuting algebra of the Gelfand- Graev representation of the general linear group is examined; here is a finite field of elements; the structure constants are explicitly determined first for the standard basis and then for a new basis obtained via a Mellin-transformation....
Günter Köhler (1988)
Mathematische Zeitschrift
Similarity:
Golubeva, E.P. (2004)
Zapiski Nauchnykh Seminarov POMI
Similarity:
W. Kohnen (1985)
Journal für die reine und angewandte Mathematik
Similarity:
Mark Reeder (1997)
Forum mathematicum
Similarity:
B. Conrey, H. Iwaniec (2002)
Acta Arithmetica
Similarity:
D. Goundaroulis, J. Juyumaya, A. Kontogeorgis, S. Lambropoulou (2014)
Banach Center Publications
Similarity:
We define the Yokonuma-Temperley-Lieb algebra as a quotient of the Yokonuma-Hecke algebra over a two-sided ideal generated by an expression analogous to the one of the classical Temperley-Lieb algebra. The main theorem provides necessary and sufficient conditions for the Markov trace defined on the Yokonuma-Hecke algebra to pass through to the quotient algebra, leading to a sequence of knot invariants which coincide with the Jones polynomial.
David Johnson (1979)
Journal für die reine und angewandte Mathematik
Similarity: