Time Reversal and the Completion of Markov Processes
J.B. WALSH (1970)
Inventiones mathematicae
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
J.B. WALSH (1970)
Inventiones mathematicae
Similarity:
Maria Jankiewicz, B. Kopociński (1976)
Applicationes Mathematicae
Similarity:
Klaus Schmidt, William Parry (1984)
Inventiones mathematicae
Similarity:
R. Magiera, R. Różanski (1985)
Banach Center Publications
Similarity:
P.J. Fitzsimmons (1986)
Mathematische Zeitschrift
Similarity:
Maria Jankiewicz, T. Rolski (1977)
Applicationes Mathematicae
Similarity:
Reinhard Wobst
Similarity:
CONTENTS0. Introduction...................................................................................5 0.1. Notations and preliminary results..............................................7Chapter 1. Jump processes with drift.................................................9 1.1. Definition basic properties........................................................9 1.2. Characteristics of j.p.d............................................................12 1.2.1. Drift functions.....................................................................12 1.2.2....
Jeffrey J. Hunter (2016)
Special Matrices
Similarity:
This article describes an accurate procedure for computing the mean first passage times of a finite irreducible Markov chain and a Markov renewal process. The method is a refinement to the Kohlas, Zeit fur Oper Res, 30, 197–207, (1986) procedure. The technique is numerically stable in that it doesn’t involve subtractions. Algebraic expressions for the special cases of one, two, three and four states are derived.Aconsequence of the procedure is that the stationary distribution of the...
W. P. Cherry, R. L. Disney (1983)
Applicationes Mathematicae
Similarity:
Maria Jankiewicz (1978)
Applicationes Mathematicae
Similarity:
Wolfgang Krieger (1980)
Inventiones mathematicae
Similarity:
Maria Jankiewicz (1978)
Applicationes Mathematicae
Similarity: