Primes and Powers of 2.
P.X. Gallagher (1975)
Inventiones mathematicae
Similarity:
P.X. Gallagher (1975)
Inventiones mathematicae
Similarity:
H.G. Diamond, J. Steinig (1970)
Inventiones mathematicae
Similarity:
Yong-Gao Chen (2012)
Acta Arithmetica
Similarity:
M.N. Huxley (1971/72)
Inventiones mathematicae
Similarity:
Christian Elsholtz (2003)
Acta Arithmetica
Similarity:
Yingchun Cai (2002)
Acta Arithmetica
Similarity:
D.R. Heath-Brown, H. Iwaniec (1979)
Inventiones mathematicae
Similarity:
Jean-Marie De Koninck, Jason Pierre Sweeney (2001)
Colloquium Mathematicae
Similarity:
The main objective of this paper is to analyze the unimodal character of the frequency function of the largest prime factor. To do that, let P(n) stand for the largest prime factor of n. Then define f(x,p): = #{n ≤ x | P(n) = p}. If f(x,p) is considered as a function of p, for 2 ≤ p ≤ x, the primes in the interval [2,x] belong to three intervals I₁(x) = [2,v(x)], I₂(x) = ]v(x),w(x)[ and I₃(x) = [w(x),x], with v(x) < w(x), such that f(x,p) increases for p ∈ I₁(x), reaches its maximum...
Yuan Wang (1978-1979)
Séminaire Delange-Pisot-Poitou. Théorie des nombres
Similarity:
Feuerverger, Andrey, Martin, Greg (2000)
Experimental Mathematics
Similarity:
Křížek, Michal, Luca, Florian, Shparlinski, Igor E., Somer, Lawrence (2011)
Journal of Integer Sequences [electronic only]
Similarity:
Yoichi Motohashi (1978)
Inventiones mathematicae
Similarity:
Chaumont, Alain, Müller, Tom (2006)
Journal of Integer Sequences [electronic only]
Similarity: