On the zeros of Dirichlet L-functions. IV.
Akio Fujii (1976)
Journal für die reine und angewandte Mathematik
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Akio Fujii (1976)
Journal für die reine und angewandte Mathematik
Similarity:
H.S. Shapiro, A.L. Shields (1962/63)
Mathematische Zeitschrift
Similarity:
K. Ramachandra, A. Sankaranarayanan (1994)
Mathematica Scandinavica
Similarity:
Tom Meurman (1983)
Mathematica Scandinavica
Similarity:
Lennart Carleson (1952)
Mathematische Zeitschrift
Similarity:
James Lee Hafner (1983)
Mathematische Annalen
Similarity:
H.L. MONTGOMERY (1969)
Inventiones mathematicae
Similarity:
Enrico Bombieri, Alberto Perelli (2001)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Similarity:
Under certain mild analytic assumptions one obtains a lower bound, essentially of order , for the number of zeros and poles of a Dirichlet series in a disk of radius . A more precise result is also obtained under more restrictive assumptions but still applying to a large class of Dirichlet series.
J. B. Conrey, H. Iwaniec, K. Soundararajan (2012)
Acta Arithmetica
Similarity:
Stéphane R. Louboutin (2003)
Colloquium Mathematicae
Similarity:
We prove that if χ is a real non-principal Dirichlet character for which L(1,χ) ≤ 1- log2, then Chowla's hypothesis is not satisfied and we cannot use Chowla's method for proving that L(s,χ) > 0 for s > 0.