One-sided Lebesgue Bernoulli maps of the sphere of degree and .
Barnes, Julia A., Koss, Lorelei (2000)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Barnes, Julia A., Koss, Lorelei (2000)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Huaibin Li, Weixiao Shen (2008)
Fundamenta Mathematicae
Similarity:
Consider a rational map f on the Riemann sphere of degree at least 2 which has no parabolic periodic points. Assuming that f has Rivera-Letelier's backward contraction property with an arbitrarily large constant, we show that the upper box dimension of the Julia set J(f) is equal to its hyperbolic dimension, by investigating the properties of conformal measures on the Julia set.
Manfred Denker, Mariusz Urbanski (1991)
Forum mathematicum
Similarity:
R.G. SWAN (1969)
Inventiones mathematicae
Similarity:
M. Denker, M. Urbanski (1992)
Mathematische Zeitschrift
Similarity:
Frans Huikeshoven (1973)
Inventiones mathematicae
Similarity:
Eric Bedford, M. Lyubich, John Smilie (1993)
Inventiones mathematicae
Similarity:
N. Mohan Kumar (1981/82)
Inventiones mathematicae
Similarity:
Jan Chabrowski (1983)
Mathematische Zeitschrift
Similarity:
Michael D. Boshernitzan (1993)
Inventiones mathematicae
Similarity:
Rufus Bowen (1975)
Inventiones mathematicae
Similarity: