The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups, I.”

Distinctness of spaces of Lorentz-Zygmund multipliers

Kathryn E. Hare, Parasar Mohanty (2005)

Studia Mathematica

Similarity:

We study the spaces of Lorentz-Zygmund multipliers on compact abelian groups and show that many of these spaces are distinct. This generalizes earlier work on the non-equality of spaces of Lorentz multipliers.

Multipliers of sequence spaces

Raymond Cheng, Javad Mashreghi, William T. Ross (2017)

Concrete Operators

Similarity:

This paper is selective survey on the space lAp and its multipliers. It also includes some connections of multipliers to Birkhoff-James orthogonality

Schur and operator multipliers

Ivan G. Todorov, Lyudmila Turowska (2010)

Banach Center Publications

Similarity:

The present article is a survey of known results on Schur and operator multipliers. It starts with the classical description of Schur multipliers due to Grothendieck, followed by a discussion of measurable Schur multipliers and a generalisation of Grothendieck's Theorem due to Peller. Thereafter, a non-commutative version of Schur multipliers, called operator multipliers and introduced by Kissin and Schulman, is discussed, and a characterisation extending the description in the commutative...

Hörmander type multiplier theorem on complex Iwasawa AN groups

W. Hebisch (2010)

Colloquium Mathematicae

Similarity:

We prove that, for a distinguished laplacian on an Iwasawa AN group corresponding to a complex semisimple Lie group, a Hörmander type multiplier theorem holds. Our argument is based on Littlewood-Paley theory.