Some subnormal Toeplitz operators.
Carl C. Cowen, John J. Long (1984)
Journal für die reine und angewandte Mathematik
Similarity:
Carl C. Cowen, John J. Long (1984)
Journal für die reine und angewandte Mathematik
Similarity:
Carl C. Cowen (1986)
Journal für die reine und angewandte Mathematik
Similarity:
Douglas N. Clark (1980)
Journal für die reine und angewandte Mathematik
Similarity:
Albrecht Böttcher (1990)
Monatshefte für Mathematik
Similarity:
Joanna Jurasik, Bartosz Łanucha (2016)
Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica
Similarity:
Asymmetric truncated Toeplitz operators are compressions of multiplication operators acting between two model spaces. These operators are natural generalizations of truncated Toeplitz operators. In this paper we describe symbols of asymmetric truncated Toeplitz operators equal to the zero operator.
R.G. Douglas (1968)
Journal für die reine und angewandte Mathematik
Similarity:
Edward O. Thorp (1960)
Journal für die reine und angewandte Mathematik
Similarity:
Elżbieta Król-Klimkowska, Marek Ptak (2016)
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
Similarity:
The investigation of properties of generalized Toeplitz operators with respect to the pairs of doubly commuting contractions (the abstract analogue of classical two variable Toeplitz operators) is proceeded. We especially concentrate on the condition of existence such a non-zero operator. There are also presented conditions of analyticity of such an operator.
S. Goldberg, E.O. Thorp (1962)
Journal für die reine und angewandte Mathematik
Similarity:
Edward O. Thorp (1965)
Journal für die reine und angewandte Mathematik
Similarity:
Robert F. Olin, James E. Thomson (1977)
Journal für die reine und angewandte Mathematik
Similarity:
G.A. Miller (1911)
Journal für die reine und angewandte Mathematik
Similarity:
Joel Anderson (1977)
Journal für die reine und angewandte Mathematik
Similarity:
Mehdi Nikpour (2019)
Czechoslovak Mathematical Journal
Similarity:
Based on the results in A. Feintuch (1989), this work sheds light upon some interesting properties of strongly asymptotically Toeplitz and Hankel operators, and relations between these two classes of operators. Indeed, among other things, two main results here are (a) vanishing Toeplitz and Hankel operators forms an ideal, and (b) finding the distance of a strongly asymptotically Toeplitz operator from the set of vanishing Toeplitz operators.