Displaying similar documents to “On evolution inequalities of a modified Navier-Stokes type. II”

Dynamic contact problems with slip-dependent friction in viscoelasticity

Ioan Ionescu, Quoc-Lan Nguyen (2002)

International Journal of Applied Mathematics and Computer Science

Similarity:

The dynamic evolution with frictional contact of a viscoelastic body is considered. The assumptions on the functions used in modelling the contact are broad enough to include both the normal compliance and the Tresca models. The friction law uses a friction coefficient which is a non-monotone function of the slip. The existence and uniqueness of the solution are proved in the general three-dimensional case.

On evolution inequalities of a modified Navier-Stokes type. I

Manfred Müller, Joachim Naumann (1978)

Aplikace matematiky

Similarity:

The paper present an existence theorem for a strong solution to an abstract evolution inequality where the properties of the operators involved are motivated by a type of modified Navier-Stokes equations under certain unilateral boundary conditions. The method of proof rests upon a Galerkin type argument combined with the regularization of the functional.

Local existence of solutions of the free boundary problem for the equations of compressible barotropic viscous self-gravitating fluids

G. Ströhmer, W. Zajączkowski (1999)

Applicationes Mathematicae

Similarity:

Local existence of solutions is proved for equations describing the motion of a viscous compressible barotropic and self-gravitating fluid in a domain bounded by a free surface. First by the Galerkin method and regularization techniques the existence of solutions of the linearized momentum equations is proved, next by the method of successive approximations local existence to the nonlinear problem is shown.

Local existence of solutions of a free boundary problem for equations of compressible viscous heat-conducting fluids

Ewa Zadrzyńska, Wojciech Zajączkowski (1998)

Applicationes Mathematicae

Similarity:

The local existence and the uniqueness of solutions for equations describing the motion of viscous compressible heat-conducting fluids in a domain bounded by a free surface is proved. First, we prove the existence of solutions of some auxiliary problems by the Galerkin method and by regularization techniques. Next, we use the method of successive approximations to prove the local existence for the main problem.