Displaying similar documents to “The Prym variety for a cyclic unramified cover of a hyperelliptic Riemann surface.”

On the family of cyclic trigonal Riemann surfaces of genus 4 with several trigonal morphisms.

Antonio F. Costa, Milagros Izquierdo, Daniel Ying (2007)

RACSAM

Similarity:

A closed Riemann surface which is a 3-sheeted regular covering of the Riemann sphere is called cyclic trigonal, and such a covering is called a cyclic trigonal morphism. Accola showed that if the genus is greater or equal than 5 the trigonal morphism is unique. Costa-Izquierdo-Ying found a family of cyclic trigonal Riemann surfaces of genus 4 with two trigonal morphisms. In this work we show that this family is the Riemann sphere without three points. We also prove that the Hurwitz space...

Basis of homology adapted to the trigonal automorphism of a Riemann surface.

Helena B. Campos (2007)

RACSAM

Similarity:

A closed (compact without boundary) Riemann surface S of genus g is said to be trigonal if there is a three sheeted covering (a trigonal morphism) from S to the Riemann sphere, ƒ : S →Ĉ. If there is an automorphism of period three, φ, on S permuting the sheets of the covering, we shall call S cyclic trigonal and will be called trigonal automorphism. In this paper we determine the intersection matrix on the first homology group of a cyclic trigonal Riemann surface on an adapted basis...

On pq-hyperelliptic Riemann surfaces

Ewa Tyszkowska (2005)

Colloquium Mathematicae

Similarity:

A compact Riemann surface X of genus g > 1 is said to be p-hyperelliptic if X admits a conformal involution ϱ, called a p-hyperelliptic involution, for which X/ϱ is an orbifold of genus p. If in addition X admits a q-hypereliptic involution then we say that X is pq-hyperelliptic. We give a necessary and sufficient condition on p,q and g for existence of a pq-hyperelliptic Riemann surface of genus g. Moreover we give some conditions under which p- and q-hyperelliptic involutions of...

On commutativity and ovals for a pair of symmetries of a Riemann surface

Ewa Kozłowska-Walania (2007)

Colloquium Mathematicae

Similarity:

We study the upper bounds for the total number of ovals of two symmetries of a Riemann surface of genus g, whose product has order n. We show that the natural bound coming from Bujalance, Costa, Singerman and Natanzon's original results is attained for arbitrary even n, and in case of n odd, there is a sharper bound, which is attained. We also prove that two (M-q)- and (M-q')-symmetries of a Riemann surface X of genus g commute for g ≥ q+q'+1 (by (M-q)-symmetry we understand a symmetry...

Koebe's general uniformisation theorem for planar Riemann surfaces

Gollakota V. V. Hemasundar (2011)

Annales Polonici Mathematici

Similarity:

We give a complete and transparent proof of Koebe's General Uniformisation Theorem that every planar Riemann surface is biholomorphic to a domain in the Riemann sphere ℂ̂, by showing that a domain with analytic boundary and at least two boundary components on a planar Riemann surface is biholomorphic to a circular-slit annulus in ℂ.