Pair correlation of zeros of the zeta function.
P.X. Gallagher (1985)
Journal für die reine und angewandte Mathematik
Similarity:
P.X. Gallagher (1985)
Journal für die reine und angewandte Mathematik
Similarity:
Tsz Ho Chan (2004)
Acta Arithmetica
Similarity:
Akio Fujii (1978)
Journal für die reine und angewandte Mathematik
Similarity:
Tsz Ho Chan (2004)
Acta Arithmetica
Similarity:
J.B. Conrey (1989)
Journal für die reine und angewandte Mathematik
Similarity:
H. M. Bui (2014)
Acta Arithmetica
Similarity:
Assuming the Riemann Hypothesis we show that there exist infinitely many consecutive zeros of the Riemann zeta-function whose gaps are greater than 2.9 times the average spacing.
D. Heath-Brown (1982)
Acta Arithmetica
Similarity:
Laurinčikas, Antanas, Steuding, Jörn (2004)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
A.M. Odlyzko, H.J.J. te Riele (1985)
Journal für die reine und angewandte Mathematik
Similarity:
D.R. Heath-Brown, J.B. Conrey (1985)
Journal für die reine und angewandte Mathematik
Similarity:
Shaoji Feng (2005)
Acta Arithmetica
Similarity:
P.D.T.A. Elliott (1972)
Journal für die reine und angewandte Mathematik
Similarity:
Shao-Ji Feng (2004)
Acta Arithmetica
Similarity:
Akio Fujii (1979)
Journal für die reine und angewandte Mathematik
Similarity:
Habiba Kadiri (2013)
Acta Arithmetica
Similarity:
We prove an explicit bound for N(σ,T), the number of zeros of the Riemann zeta function satisfying ℜ𝔢 s ≥ σ and 0 ≤ ℑ𝔪 s ≤ T. This result provides a significant improvement to Rosser's bound for N(T) when used for estimating prime counting functions.