The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Von Neumann operators are reflexive.”

Commutants of von Neumann correspondences and duality of Eilenberg-Watts theorems by Rieffel and by Blecher

Michael Skeide (2006)

Banach Center Publications

Similarity:

The category of von Neumann correspondences from 𝓑 to 𝓒 (or von Neumann 𝓑-𝓒-modules) is dual to the category of von Neumann correspondences from 𝓒' to 𝓑' via a functor that generalizes naturally the functor that sends a von Neumann algebra to its commutant and back. We show that under this duality, called commutant, Rieffel's Eilenberg-Watts theorem (on functors between the categories of representations of two von Neumann algebras) switches into Blecher's Eilenberg-Watts theorem...

On the Neumann problem with L¹ data

J. Chabrowski (2007)

Colloquium Mathematicae

Similarity:

We investigate the solvability of the linear Neumann problem (1.1) with L¹ data. The results are applied to obtain existence theorems for a semilinear Neumann problem.

On the Neumann problem with combined nonlinearities

Jan Chabrowski, Jianfu Yang (2005)

Annales Polonici Mathematici

Similarity:

We establish the existence of multiple solutions of an asymptotically linear Neumann problem. These solutions are obtained via the mountain-pass principle and a local minimization.

On a Weyl-von Neumann type theorem for antilinear self-adjoint operators

Santtu Ruotsalainen (2012)

Studia Mathematica

Similarity:

Antilinear operators on a complex Hilbert space arise in various contexts in mathematical physics. In this paper, an analogue of the Weyl-von Neumann theorem for antilinear self-adjoint operators is proved, i.e. that an antilinear self-adjoint operator is the sum of a diagonalizable operator and of a compact operator with arbitrarily small Schatten p-norm. On the way, we discuss conjugations and their properties. A spectral integral representation for antilinear self-adjoint operators...

Triple derivations on von Neumann algebras

Robert Pluta, Bernard Russo (2015)

Studia Mathematica

Similarity:

It is well known that every derivation of a von Neumann algebra into itself is an inner derivation and that every derivation of a von Neumann algebra into its predual is inner. It is less well known that every triple derivation (defined below) of a von Neumann algebra into itself is an inner triple derivation. We examine to what extent all triple derivations of a von Neumann algebra into its predual are inner. This rarely happens but it comes close. We prove a (triple)...