Displaying similar documents to “Least square method for solving contact problems with friction obeying the Coulomb law”

Finite element analysis for unilateral problems with obstacles on the boundary

Jaroslav Haslinger (1977)

Aplikace matematiky

Similarity:

Finite element analysis of unilateral problems with obstacles on the boundary is given. Provided the exact solution is smooth enough, we obtain the rate of convergence 0 ( h ) for the case of one and two (lower and upper) obstacles on the boundary. At the end of this paper the proof of convergence without any regularity assumptions on the exact solution u is given.

Mixed formulation of elliptic variational inequalities and its approximation

Jaroslav Haslinger (1981)

Aplikace matematiky

Similarity:

The approximation of a mixed formulation of elliptic variational inequalities is studied. Mixed formulation is defined as the problem of finding a saddle-point of a properly chosen Lagrangian 2 on a certain convex set K x Λ . Sufficient conditions, guaranteeing the convergence of approximate solutions are studied. Abstract results are applied to concrete examples.

On finite element uniqueness studies for Coulombs frictional contact model

Patrick Hild (2002)

International Journal of Applied Mathematics and Computer Science

Similarity:

We are interested in the finite element approximation of Coulomb's frictional unilateral contact problem in linear elasticity. Using a mixed finite element method and an appropriate regularization, it becomes possible to prove existence and uniqueness when the friction coefficient is less than Cε^{2}|log(h)|^{-1}, where h and ε denote the discretization and regularization parameters, respectively. This bound converging very slowly towards 0 when h decreases (in comparison with the already...