### On the Yang-Mills heat equation in two and three dimensions.

Johan Rade (1992)

Journal für die reine und angewandte Mathematik

Similarity:

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

Johan Rade (1992)

Journal für die reine und angewandte Mathematik

Similarity:

G. A. Vilkovisky (1992)

Recherche Coopérative sur Programme n°25

Similarity:

Hukum Chand Agrawal (1977)

Publications de l'Institut Mathématique

Similarity:

Marian Smoluchowski (1924)

Pisma Mariana Smoluchowskiego

Similarity:

Szymon Dolecki (1973)

Studia Mathematica

Similarity:

G. K. Dhawan, D. D. Paliwal (1977)

Publications de l'Institut Mathématique

Similarity:

Savo, Alessandro (1997)

General Mathematics

Similarity:

Moitsheki, Raseelo J., Rowjee, Atish (2011)

Mathematical Problems in Engineering

Similarity:

Chuan-yi Xu (1989)

Mathematische Annalen

Similarity:

Vassilevich, Dmitri V. (2007)

SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]

Similarity:

Chen, Xiao Dong, Nguang, Sing Kiong (2003)

Journal of Applied Mathematics and Decision Sciences

Similarity:

D. Caillerie, B. Dinari (1987)

Banach Center Publications

Similarity:

Jaime E. Muñoz Rivera, Vanilde Bisognin, Eleni Bisognin (2002)

Bollettino dell'Unione Matematica Italiana

Similarity:

We study the thermoelastic system for material which are partially thermoelastic. That is, a material divided into two parts, one of them a good conductor of heat, so there exists a thermoelastic phenomenon. The other is a bad conductor of heat so there is not heat flux. We prove for such models that the solution decays exponentially as time goes to infinity. We also consider a nonlinear case.