The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “One-Dimensional Local Rings with Reduced Associated Graded Ring and Their Hilbert Functions.”

Construction of Auslander-Gorenstein local rings as Frobenius extensions

Mitsuo Hoshino, Noritsugu Kameyama, Hirotaka Koga (2015)

Colloquium Mathematicae

Similarity:

Starting from an arbitrary ring R we provide a systematic construction of ℤ/nℤ-graded rings A which are Frobenius extensions of R, and show that under mild assumptions, A is an Auslander-Gorenstein local ring if and only if so is R.

Recognizing dualizing complexes

Peter Jørgensen (2003)

Fundamenta Mathematicae

Similarity:

Let A be a noetherian local commutative ring and let M be a suitable complex of A-modules. It is proved that M is a dualizing complex for A if and only if the trivial extension A ⋉ M is a Gorenstein differential graded algebra. As a corollary, A has a dualizing complex if and only if it is a quotient of a Gorenstein local differential graded algebra.

Weak dimension of group-graded rings.

Angel del Río (1990)

Publicacions Matemàtiques

Similarity:

We study the weak dimension of a group-graded ring using methods developed in [B1], [Q] and [R]. We prove that if R is a G-graded ring with G locally finite and the order of every subgroup of G is invertible in R, then the graded weak dimension of R is equal to the ungraded one.