### Some Distribution Properties of 0,1-Sequences.

R.F. Tichy, P. Kirschenhofer (1986)

Manuscripta mathematica

Similarity:

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

R.F. Tichy, P. Kirschenhofer (1986)

Manuscripta mathematica

Similarity:

Pierre Liardet (1990)

Acta Arithmetica

Similarity:

Gerhard Larcher (1988)

Manuscripta mathematica

Similarity:

E. Rosochowicz (1989)

Colloquium Mathematicae

Similarity:

Alan Zame (1972)

Colloquium Mathematicae

Similarity:

Ivan Niven (1964)

Compositio Mathematica

Similarity:

D. Pantić, N. Bijedić (1984)

Matematički Vesnik

Similarity:

Imre Z. Ruzsa (1989)

Colloquium Mathematicae

Similarity:

John H. Hodges (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

In 1972 the author used a result of K.F. Roth on irregularities in distribution of sequences of real numbers to prove an analogous result related to the distribution of sequences of integers in prescribed residue classes. Here, a 1972 result of W.M. Schmidt, which is an improvement of Roth's result, is used to obtain an improved result for sequences of integers.

John H. Hodges (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

D. Landers, L. Rogge (1975)

Manuscripta mathematica

Similarity:

Yeneng Sun (1993)

Compositio Mathematica

Similarity:

L. Carlitz, R. Scoville (1976)

Manuscripta mathematica

Similarity:

Henri Faure, Friedrich Pillichshammer (2013)

Acta Arithmetica

Similarity:

In uniform distribution theory, discrepancy is a quantitative measure for the irregularity of distribution of a sequence modulo one. At the moment the concept of digital (t,s)-sequences as introduced by Niederreiter provides the most powerful constructions of s-dimensional sequences with low discrepancy. In one dimension, recently Faure proved exact formulas for different notions of discrepancy for the subclass of NUT digital (0,1)-sequences. It is the aim of this paper to generalize...

Robert F. Tichy (1982)

Manuscripta mathematica

Similarity: