The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The First Cohomology Group of Leaves and Local Stability of Compact Foliations.”

A remark on Thurston's stability theorem

Richard Sacksteder (1975)

Annales de l'institut Fourier

Similarity:

The author gives an example showing that Thurston’s stability theorem cannot be generalized to non-oriented foliations.

Top-Dimensional Group of the Basic Intersection Cohomology for Singular Riemannian Foliations

José Ignacio Royo Prieto, Martintxo Saralegi-Aranguren, Robert Wolak (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

It is known that, for a regular riemannian foliation on a compact manifold, the properties of its basic cohomology (non-vanishing of the top-dimensional group and Poincaré duality) and the tautness of the foliation are closely related. If we consider singular riemannian foliations, there is little or no relation between these properties. We present an example of a singular isometric flow for which the top-dimensional basic cohomology group is non-trivial, but the basic cohomology does...

Multivalued Lyapunov functions for homeomorphisms of the 2-torus

Patrice Le Calvez (2006)

Fundamenta Mathematicae

Similarity:

Let F be a homeomorphism of 𝕋² = ℝ²/ℤ² isotopic to the identity and f a lift to the universal covering space ℝ². We suppose that κ ∈ H¹(𝕋²,ℝ) is a cohomology class which is positive on the rotation set of f. We prove the existence of a smooth Lyapunov function of f whose derivative lifts a non-vanishing smooth closed form on 𝕋² whose cohomology class is κ.

Localization of basic characteristic classes

Dirk Töben (2014)

Annales de l’institut Fourier

Similarity:

We introduce basic characteristic classes and numbers as new invariants for Riemannian foliations. If the ambient Riemannian manifold M is complete, simply connected (or more generally if the foliation is a transversely orientable Killing foliation) and if the space of leaf closures is compact, then the basic characteristic numbers are determined by the infinitesimal dynamical behavior of the foliation at the union of its closed leaves. In fact, they can be computed with an Atiyah-Bott-Berline-Vergne-type...

On G-foliations

Robert Wolak (1985)

Annales Polonici Mathematici

Similarity:

Bilipschitz invariance of the first transverse characteristic map

Michel Hilsum (2012)

Banach Center Publications

Similarity:

Given a smooth S¹-foliated bundle, A. Connes has shown the existence of an additive morphism ϕ from the K-theory group of the foliation C*-algebra to the scalar field, which factorizes, via the assembly map, the Godbillon-Vey class, which is the first secondary characteristic class, of the classifying space. We prove the invariance of this map under a bilipschitz homeomorphism, extending a previous result for maps of class C¹ by H. Natsume.