Displaying similar documents to “Some Applications of Sieve Methods in Algebra Number Fields.”

Infinite primes and ordered fields

D. W. Dubois

Similarity:

CONTENTSIntroduction....................................................................................... 5§ 1. Preliminaries............................................................................ 8§ 2. Constructions........................................................................... 10§ 3. Orders and modes.................................................................. 13§ 4. Conic primes............................................................................ 19§...

Gaps between primes in Beatty sequences

Roger C. Baker, Liangyi Zhao (2016)

Acta Arithmetica

Similarity:

We study the gaps between primes in Beatty sequences following the methods in the recent breakthrough by Maynard (2015).

On the class numbers of real cyclotomic fields of conductor pq

Eleni Agathocleous (2014)

Acta Arithmetica

Similarity:

The class numbers h⁺ of the real cyclotomic fields are very hard to compute. Methods based on discriminant bounds become useless as the conductor of the field grows, and methods employing Leopoldt's decomposition of the class number become hard to use when the field extension is not cyclic of prime power. This is why other methods have been developed, which approach the problem from different angles. In this paper we extend one of these methods that was designed for real cyclotomic fields...

A higher rank Selberg sieve and applications

Akshaa Vatwani (2018)

Czechoslovak Mathematical Journal

Similarity:

We develop an axiomatic formulation of the higher rank version of the classical Selberg sieve. This allows us to derive a simplified proof of the Zhang and Maynard-Tao result on bounded gaps between primes. We also apply the sieve to other subsequences of the primes and obtain bounded gaps in various settings.

Primes in tuples IV: Density of small gaps between consecutive primes

Daniel Alan Goldston, János Pintz, Cem Yalçın Yıldırım (2013)

Acta Arithmetica

Similarity:

We prove that given any small but fixed η > 0, a positive proportion of all gaps between consecutive primes are smaller than η times the average gap. We show some unconditional and conditional quantitative results in this vein. In the results the dependence on η is given explicitly, providing a new quantitative way, in addition to that of the first paper in this series, of measuring the effect of the knowledge on the level of distribution of primes.