Generic warped product submanifolds in nearly Kähler manifolds.
Khan, Viqar Azam, Khan, Khalid Ali (2009)
Beiträge zur Algebra und Geometrie
Similarity:
Khan, Viqar Azam, Khan, Khalid Ali (2009)
Beiträge zur Algebra und Geometrie
Similarity:
Ṣahin, Bayram, Güneṣ, Rıfat (2008)
Beiträge zur Algebra und Geometrie
Similarity:
Toru Sasahara (2014)
Czechoslovak Mathematical Journal
Similarity:
An explicit representation for ideal CR submanifolds of a complex hyperbolic space has been derived in T. Sasahara (2002). We simplify and reformulate the representation in terms of certain Kähler submanifolds. In addition, we investigate the almost contact metric structure of ideal CR submanifolds in a complex hyperbolic space. Moreover, we obtain a codimension reduction theorem for ideal CR submanifolds in a complex projective space.
Hong, Yi, Houh, Chorng Shi (1998)
Beiträge zur Algebra und Geometrie
Similarity:
Kazumi Tsukada (1986)
Mathematische Annalen
Similarity:
Marcos Dajczer, Lucio Rodríguez (1991)
Journal für die reine und angewandte Mathematik
Similarity:
Maria J. Ferreira, Marco Rigoli, Renato Tribuzy (1995)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Al-Ghefari, Reem, Al-Solamy, Falleh R., Shahid, Mohammed H. (2006)
Balkan Journal of Geometry and its Applications (BJGA)
Similarity:
Bang-yen Chen (1981)
Monatshefte für Mathematik
Similarity:
Simona Costache, Iuliana Zamfir (2014)
Annales Polonici Mathematici
Similarity:
B. Y. Chen [Arch. Math. (Basel) 74 (2000), 154-160] proved a geometrical inequality for Lagrangian submanifolds in complex space forms in terms of the Ricci curvature and the squared mean curvature. Recently, this Chen-Ricci inequality was improved in [Int. Electron. J. Geom. 2 (2009), 39-45]. On the other hand, K. Arslan et al. [Int. J. Math. Math. Sci. 29 (2002), 719-726] established a Chen-Ricci inequality for submanifolds, in particular in contact slant submanifolds,...