Iwasawa invariants of imaginary quadratic fields.
Shu-Leung Tang (1993)
Manuscripta mathematica
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Shu-Leung Tang (1993)
Manuscripta mathematica
Similarity:
Dave Benson (1994)
Manuscripta mathematica
Similarity:
Nancy Childress (1990)
Manuscripta mathematica
Similarity:
Jae Moon Kim, Seung Ik Oh (2000)
Acta Arithmetica
Similarity:
Manabu Ozaki, Hisao Taya (1997)
Manuscripta mathematica
Similarity:
Manabu Ozaki, Gen Yamamoto (2001)
Acta Arithmetica
Similarity:
Akira Aiba (2003)
Acta Arithmetica
Similarity:
Uwe Kaiser (1992)
Manuscripta mathematica
Similarity:
Lous H. Kauffman, Sóstences Lins (1991)
Manuscripta mathematica
Similarity:
Manohar L. Madan, G. Villa Salvador (1988)
Manuscripta mathematica
Similarity:
Yuka Kotorii (2014)
Fundamenta Mathematicae
Similarity:
We define finite type invariants for cyclic equivalence classes of nanophrases and construct universal invariants. Also, we identify the universal finite type invariant of degree 1 essentially with the linking matrix. It is known that extended Arnold basic invariants to signed words are finite type invariants of degree 2, by Fujiwara's work. We give another proof of this result and show that those invariants do not provide the universal one of degree 2.
Sheng-Li Tan (1994)
Manuscripta mathematica
Similarity:
Alexander B. Merkov (1999)
Publications de l'Institut Mathématique
Similarity:
Kulish, P.P., Nikitin, A.M. (2000)
Zapiski Nauchnykh Seminarov POMI
Similarity:
J. Kaczorowski, A. Perelli (2008)
Acta Arithmetica
Similarity:
Kuniaki Horie (1989)
Manuscripta mathematica
Similarity: