The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “There are infinitely many Lissajous knots.”

Minimal degree sequence for 2-bridge knots

Prabhakar Madeti, Rama Mishra (2006)

Fundamenta Mathematicae

Similarity:

We discuss polynomial representations for 2-bridge knots and determine the minimal degree sequence for all such knots. We apply the connection between rational tangles and 2-bridge knots.

Every knot is a billiard knot

P. V. Koseleff, D. Pecker (2014)

Banach Center Publications

Similarity:

We show that every knot can be realized as a billiard trajectory in a convex prism. This proves a conjecture of Jones and Przytycki.

Unknotting number and knot diagram.

Yasutaka Nakanishi (1996)

Revista Matemática de la Universidad Complutense de Madrid

Similarity:

This note is a continuation of a former paper, where we have discussed the unknotting number of knots with respect to knot diagrams. We will show that for every minimum-crossing knot-diagram among all unknotting-number-one two-bridge knot there exist crossings whose exchange yields the trivial knot, if the third Tait conjecture is true.