Iwasawa invariants of imaginary quadratic fields.
Shu-Leung Tang (1993)
Manuscripta mathematica
Similarity:
Shu-Leung Tang (1993)
Manuscripta mathematica
Similarity:
Jae Moon Kim, Seung Ik Oh (2000)
Acta Arithmetica
Similarity:
K. Horie (1987)
Inventiones mathematicae
Similarity:
Hiroshi Yamashita (1993)
Manuscripta mathematica
Similarity:
Tsuneo Arakawa (1982)
Mathematische Annalen
Similarity:
Robert Gold, James R. Brink (1986/87)
Manuscripta mathematica
Similarity:
Jochen Koenigsmann (1995)
Manuscripta mathematica
Similarity:
Dongho Byeon (2005)
Acta Arithmetica
Similarity:
Akiko Ito (2015)
Acta Arithmetica
Similarity:
Let p be an odd prime number. We prove the existence of certain infinite families of imaginary quadratic fields in which p splits and for which the Iwasawa λ-invariant of the cyclotomic ℤₚ-extension is equal to 1.
M. Kula, L. Szczepanik, K. Szymiczek (1979)
Manuscripta mathematica
Similarity:
Manohar L. Madan, G. Villa Salvador (1988)
Manuscripta mathematica
Similarity:
A.R. Wadsworth, P. Mammone, R. Moresi (1991)
Mathematische Zeitschrift
Similarity:
Dave Benson (1994)
Manuscripta mathematica
Similarity:
Hans-Georg Rück (1995)
Manuscripta mathematica
Similarity:
T.M. Viswanathan, A.J. Engler (1986)
Manuscripta mathematica
Similarity: